3,131 research outputs found

    Bit-interleaved coded modulation in the wideband regime

    Full text link
    The wideband regime of bit-interleaved coded modulation (BICM) in Gaussian channels is studied. The Taylor expansion of the coded modulation capacity for generic signal constellations at low signal-to-noise ratio (SNR) is derived and used to determine the corresponding expansion for the BICM capacity. Simple formulas for the minimum energy per bit and the wideband slope are given. BICM is found to be suboptimal in the sense that its minimum energy per bit can be larger than the corresponding value for coded modulation schemes. The minimum energy per bit using standard Gray mapping on M-PAM or M^2-QAM is given by a simple formula and shown to approach -0.34 dB as M increases. Using the low SNR expansion, a general trade-off between power and bandwidth in the wideband regime is used to show how a power loss can be traded off against a bandwidth gain.Comment: Submitted to IEEE Transactions on Information Theor

    Bit-Interleaved Coded Modulation Revisited: A Mismatched Decoding Perspective

    Get PDF
    We revisit the information-theoretic analysis of bit-interleaved coded modulation (BICM) by modeling the BICM decoder as a mismatched decoder. The mismatched decoding model is well-defined for finite, yet arbitrary, block lengths, and naturally captures the channel memory among the bits belonging to the same symbol. We give two independent proofs of the achievability of the BICM capacity calculated by Caire et al. where BICM was modeled as a set of independent parallel binary-input channels whose output is the bitwise log-likelihood ratio. Our first achievability proof uses typical sequences, and shows that due to the random coding construction, the interleaver is not required. The second proof is based on the random coding error exponents with mismatched decoding, where the largest achievable rate is the generalized mutual information. We show that the generalized mutual information of the mismatched decoder coincides with the infinite-interleaver BICM capacity. We also show that the error exponent -and hence the cutoff rate- of the BICM mismatched decoder is upper bounded by that of coded modulation and may thus be lower than in the infinite-interleaved model. We also consider the mutual information appearing in the analysis of iterative decoding of BICM with EXIT charts. We show that the corresponding symbol metric has knowledge of the transmitted symbol and the EXIT mutual information admits a representation as a pseudo-generalized mutual information, which is in general not achievable. A different symbol decoding metric, for which the extrinsic side information refers to the hypothesized symbol, induces a generalized mutual information lower than the coded modulation capacity.Comment: submitted to the IEEE Transactions on Information Theory. Conference version in 2008 IEEE International Symposium on Information Theory, Toronto, Canada, July 200

    Conservation laws in Skyrme-type models

    Full text link
    The zero curvature representation of Zakharov and Shabat has been generalized recently to higher dimensions and has been used to construct non-linear field theories which either are integrable or contain integrable submodels. The Skyrme model, for instance, contains an integrable subsector with infinitely many conserved currents, and the simplest Skyrmion with baryon number one belongs to this subsector. Here we use a related method, based on the geometry of target space, to construct a whole class of theories which are either integrable or contain integrable subsectors (where integrability means the existence of infinitely many conservation laws). These models have three-dimensional target space, like the Skyrme model, and their infinitely many conserved currents turn out to be Noether currents of the volume-preserving diffeomorphisms on target space. Specifically for the Skyrme model, we find both a weak and a strong integrability condition, where the conserved currents form a subset of the algebra of volume-preserving diffeomorphisms in both cases, but this subset is a subalgebra only for the weak integrable submodel.Comment: Latex file, 22 pages. Two (insignificant) errors in Eqs. 104-106 correcte

    Nearest Neighbour Decoding and Pilot-Aided Channel Estimation in Stationary Gaussian Flat-Fading Channels

    Full text link
    We study the information rates of non-coherent, stationary, Gaussian, multiple-input multiple-output (MIMO) flat-fading channels that are achievable with nearest neighbour decoding and pilot-aided channel estimation. In particular, we analyse the behaviour of these achievable rates in the limit as the signal-to-noise ratio (SNR) tends to infinity. We demonstrate that nearest neighbour decoding and pilot-aided channel estimation achieves the capacity pre-log - which is defined as the limiting ratio of the capacity to the logarithm of SNR as the SNR tends to infinity - of non-coherent multiple-input single-output (MISO) flat-fading channels, and it achieves the best so far known lower bound on the capacity pre-log of non-coherent MIMO flat-fading channels.Comment: 5 pages, 1 figure. To be presented at the IEEE International Symposium on Information Theory (ISIT), St. Petersburg, Russia, 2011. Replaced with version that will appear in the proceeding

    Low-Density Parity-Check Codes for Nonergodic Block-Fading Channels

    Full text link
    We solve the problem of designing powerful low-density parity-check (LDPC) codes with iterative decoding for the block-fading channel. We first study the case of maximum-likelihood decoding, and show that the design criterion is rather straightforward. Unfortunately, optimal constructions for maximum-likelihood decoding do not perform well under iterative decoding. To overcome this limitation, we then introduce a new family of full-diversity LDPC codes that exhibit near-outage-limit performance under iterative decoding for all block-lengths. This family competes with multiplexed parallel turbo codes suitable for nonergodic channels and recently reported in the literature.Comment: Submitted to the IEEE Transactions on Information Theor

    Investigation of restricted baby Skyrme models

    Full text link
    A restriction of the baby Skyrme model consisting of the quartic and potential terms only is investigated in detail for a wide range of potentials. Further, its properties are compared with those of the corresponding full baby Skyrme models. We find that topological (charge) as well as geometrical (nucleus/shell shape) features of baby skyrmions are captured already by the soliton solutions of the restricted model. Further, we find a coincidence between the compact or non-compact nature of solitons in the restricted model, on the one hand, and the existence or non-existence of multi-skyrmions in the full baby Skyrme model, on the other hand.Comment: latex, 18 pages, 2 figures; some typos correcte

    Economía social y solidaria en la ciudad de Neuquén : las organizaciones y sus prácticas post-crisis del 2001

    Get PDF
    La crisis de 2001 trajo aparejada una reconfiguración social, política y económica que marcó un quiebre en la sociedad argentina. En la ciudad de Neuquén, fue el contexto de surgimiento de múltiples organizaciones que llevaron adelante prácticas asociadas a la Economía Social y Solidaria (ESS). En el presente trabajo se propone realizar una descripción de las organizaciones que tienen prácticas de Economía Social y Solidaria en la Ciudad de Neuquén, y que nacieron en el período 2001-2015. Algunos rasgos de la provincia de Neuquén y su ciudad capital se tornan fundamentales para conocer en qué marco se desenvolvió histórica y actualmente la ESS. Se realiza primero una breve descripción, de algunas características espaciales, económicas, sociales y políticas que se consideran distintivas, a modo de contextualización de la presente investigación.Fil: Fachinetti Guillén, Micaela A.. Universidad Nacional de Cuyo. Facultad de Ciencias Económicas
    corecore